1010 If you don’t have 4 digits, add zeros to the front to make it four digits. So, 01 would become 0001. [1] X Research source
1010 10101{\displaystyle 1010^{1}} Note that you are not raising anything to any power – this is just a way to see what digit means what.
1010 18041201{\displaystyle 1^{8}0^{4}1^{2}0^{1}}. If the length is less than 4, then you need to add zeros on the left and make a number four digits long. [3] X Research source
1010 18041201{\displaystyle 1^{8}0^{4}1^{2}0^{1}} 8 0 2 0
1010 18041201{\displaystyle 1^{8}0^{4}1^{2}0^{1}} 8 0 2 0 8+0+2+0=10{\displaystyle 8+0+2+0=10} Final answer: The binary number 1010 converts to A in the hexadecimal system.
10=A{\displaystyle 10=A} 11=B{\displaystyle 11=B} 12=C{\displaystyle 12=C} 13=D{\displaystyle 13=D} 14=E{\displaystyle 14=E} 15=F{\displaystyle 15=F}
Convert 1 to hexadecimal. Add zeros to get four digits: 0001 Find your place holders: 08040211{\displaystyle 0^{8}0^{4}0^{2}1^{1}} Add up the digits: 0+0+0+1=1{\displaystyle 0+0+0+1=1} Final answer: 1 Convert 0101 to hexadecimal. Add zeros to get four digits: 0101 Find your place holders: 08140211{\displaystyle 0^{8}1^{4}0^{2}1^{1}} Add up the digits: 0+4+0+1=5{\displaystyle 0+4+0+1=5} Final answer: 5 Convert 1110 to hexadecimal. Add zeros to get four digits: 1110 Find your place holders: 18141201{\displaystyle 1^{8}1^{4}1^{2}0^{1}} Add up the digits: 8+4+2+0=14{\displaystyle 8+4+2+0=14} Final answer: E Convert 1011 to hexadecimal. Add zeros to get four digits: 1011 Find your place holders: 18041211{\displaystyle 1^{8}0^{4}1^{2}1^{1}} Add up the digits: 8+0+2+1=11{\displaystyle 8+0+2+1=11} Final Answer: B
Convert 11101100101001{\displaystyle 11101100101001} into a hexadecimal number. 11101100101001=(11)(1011)(0010)(1001){\displaystyle 11101100101001=(11)(1011)(0010)(1001)}
Convert 11101100101001{\displaystyle 11101100101001} into a hexadecimal number. 11101100101001=(11)(1011)(0010)(1001){\displaystyle 11101100101001=(11)(1011)(0010)(1001)} (11)(1011)(0010)(1001)={\displaystyle (11)(1011)(0010)(1001)=}(0011)(1011)(0010)(1001){\displaystyle (0011)(1011)(0010)(1001)}
0011=0+0+2+1=3{\displaystyle 0011=0+0+2+1=3} 1011=8+0+2+1=11=B{\displaystyle 1011=8+0+2+1=11=B} 0010=0+0+2+0=2{\displaystyle 0010=0+0+2+0=2} 1001=8+0+0+1=9{\displaystyle 1001=8+0+0+1=9}
(0011)(1011)(0010)(1001){\displaystyle (0011)(1011)(0010)(1001)} 3 B 2 9 11101100101001=3B29{\displaystyle 11101100101001=3B29}